Overview

DynaGlas SolarSoft Max is a revolutionary breakthrough in the horticultural industry. It is the first corrugated polycarbonate greenhouse covering to be tested for hemispherical light transmission by world renowned Wageningen UR (University and Research Center). Compared to flat coverings, DynaGlas SolarSoft Max’s Greca style corrugation allows excellent light transmittance at low sun angles, while maintaining hemispherical light transmittance up to 78%. Combining this corrugation with a unique proprietary formulation allows the DynaGlas SolarSoft Max sheet to provide 90% light dispersion while maintaining 90% light transmission. This results in a deeper penetration of light that is evenly dispersed into the plant canopy for more consistent crop growth. These benefits make DynaGlas SolarSoft Max the ultimate solution for greenhouse roofing.

Main Benefits

- Corrugated profile and improved formula allows up to 6% more light into the greenhouse in comparison to other diffused and clear polycarbonate greenhouse coverings.
- Highest DLI value of any diffused polycarbonate sheet in the industry.
- Up to 90% light transmission
- Up to 90% haze value
- Blocks out UV & far IR radiation
- Virtually unbreakable
- UV2 available (UV protection on both sides)
- Wide service temperature range -40° F to +212° F (-40° C to +120° C)
- Anti-condensate coating on the underside of the sheet controls disease and plant loss by preventing falling water droplets and reduced light transmission issues.
- 5-year hail and 10-year limited warranty against loss of light transmission / yellowing and condensation control.

www.PalramAmericas.com
The light measurement most growers rely on is the Daily Light Integral (DLI) which indicates the daily amount of accumulated Photosynthetic Active Radiation (PAR). There are many factors that affect the amount of light penetration such as greenhouse structural members, internal obstructions, directional orientation of greenhouse, angle of sun and time of year.

Of these, the angle of incidence of the sun to the greenhouse canopy surface plays a very large part in the overall PAR light transmission into the greenhouse. When the sun is at its lowest point in the sky at sunrise and sunset, flat greenhouse canopies reflect more light than they transmit. So while glass may transmit an extra 1% of light while the sun is at its highest, it will reflect most of the light as the sun sets lower. Corrugated polycarbonate refracts light at low angles, reduces reflection, and facilitates more light penetration into the greenhouse than any other material.

This graph, based on data from Wageningen UR, the global leader in greenhouse coverings testing, compares 0.8mm corrugated polycarbonate to standard 4mm greenhouse glass, the two most common long-term greenhouse covering materials.

- At direct sunlight impact angles, the glass and corrugated polycarbonate display similar light transmission
- At low sunlight angles, the corrugated polycarbonate transmits almost 20% more light.

More Evenly Dispersed.
Structural elements can establish shadows and clear glazing can form a direct light impact that may damage plants. Palram’s DynaGlas SolarSoft Max utilizes a proprietary formulation to create the perfect balance of evenly dispersed light throughout the plant canopy, while providing an ideal growing environment without the increased risk of plant burn due to intense light beams. Efficiencies are gained by using less water and loading more plants. Diffused light also reduces heat buildup in the greenhouse, resulting in a more pleasant work environment.

Standard Profile & Dimensions

<table>
<thead>
<tr>
<th>Profile</th>
<th>Color</th>
<th>Width (inches)</th>
<th>Thickness (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar Soft</td>
<td>Clear with a light diffusing texture</td>
<td>49.6” or 73.6”</td>
<td>0.048”</td>
</tr>
</tbody>
</table>

* Minimum order requirements may apply.

Regulatory Code Compliance Certification

<table>
<thead>
<tr>
<th>Organization</th>
<th>Standard</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRC-CNRC</td>
<td>Canadian NBC 2015</td>
<td>CMC Evaluation Report 13450-R</td>
</tr>
<tr>
<td>Miami Dade County</td>
<td>FBC 2017</td>
<td>NOAA# 15-120708</td>
</tr>
<tr>
<td>ICC (International Code Council)</td>
<td>IBC 2015 (Light Transmitting Plastics)</td>
<td>ESR-1893</td>
</tr>
<tr>
<td>City of Los Angeles</td>
<td>LABC 2017 (Light Transmitting Plastics)</td>
<td>RR 25298</td>
</tr>
</tbody>
</table>

Definitions:
PAR (Photosynthetic Active Radiation) is intensity of the portion of the light spectrum between 400 nm and 700 nm. This is the light a plant needs for photosynthesis to occur.

Photosynthetic Photon Flux Density (PPFD) is a measurement unit for the amount of photons that reach the plant leaf over a 1 square meter area every second, and is indicated in micromoles or (μmol) per square meter (m⁻²) per second (s⁻¹), or μmol-m⁻²·s⁻¹ of PAR.

DLI is the measurement of PAR in μmol-m⁻²·s⁻¹ accumulated over the course of a 24 hour period.